

Training Plans for

Bachelor of Technical Colleges

Technical Chemical Engineering

Index

No.	Content	Page
1.	Program Description	2
2.	Study Plan	3
3.	Brief Description	6
4.	Courses Detail Description	9
5.	Elective Courses Description	41
6.	Appendix Laboratory Equipment, Workshops and Laboratories	46
7.	List of Detailed Equipment for Each Laboratory, Workshop or Lab	47
8.	References	49

Major
Applied Chemical Production
Engineering

Program Description

This program of Chemical Production is designed so as to meet the training needs of the local labor market, following professional International standards set for Chemical Engineering Technology.

This curriculum was designed as to match the local labor markets needs and it is based on the National Professional Standards for Chemical Production Technicians.

The curriculum includes training on the general skills in English, mathematics, and computer and human communication methods and dealing with others.

It also includes training in basic skills in computers and operating systems and awareness of the trainee on the importance of safety tools and how to apply them, in addition to specialized skills in the field of chemical production such as those related to the chemical industry and energy.

The curriculum also keeps pace with the rapid development in the field of chemical production and the needs of the industrial market.

The focus during training will be on the practical side and link it to theoretical information in most of the specialized courses through intensive basic practical training and the application of a cooperative training program with sectors related to the trainee's field of study.

The duration of the program is 1312 hours of training. The graduate of this department is awarded the Intermediate University Degree in the field of chemical production.

The graduate is expected to work in areas related to chemical production as chemical equipment operator.

The Theoretical and Practical Tests and Graduation Projects Determine Learning Outcomes and Trainee Levels for each program.

The training courses contain a theoretical part and a practical part. The practical part is tested as a practical test and the theoretical part is a theoretical test with different evaluation methods

The Bachelor Degree Graduate gets the seventh level in the Saudi Arabian Qualifications Framework (SAQF).

Admission Requirements: The applicant must have a diploma in Chemical Production and Chemical Laboratories.

Department Technical Chemical Engineering

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation General Directorate of Curricula

Major Applied Chemical Production Engineering

The Curriculum Framework Distributed on Semesters 2024G

توزيع الخطة التدرببية على الفصول التدرببية لمرحلة البكالوريوس بالنظام النصفي ١٤٤٦هـ

							No. of Uni	ts						
	No.	Course Code	Course Name	Prereq	و.م	مح	عم	تم	س.أ	المتطلب	اسم المقرر	رمز المقرر	م	
					CRH	L	P	Т	СТН					
	1	ENGL 301	English Language (1)	0	3	3	0	1	4	•	لغة انجليزية ١	۳۰۱ انجل	١	li.
ster	2	MATH 301	Mathematics (1)	0	3	3	0	0	3		ریاضیات ۱	۳۰۱ ریاض	۲	فصل التا
Semester	3	PHYS 301	Physics	0	3	2	2	0	4	•	فيزياء	۳۰۱ فیزي	٣	رج: درخ:
6th	4	KCHE 331	Chemical Processes	0	3	3	0	0	3	•	العمليات الكيميائية	۳۳۱ نکیم	٤	السادء
	5	KCHE 332	Organic Chemistry	0	4	2	4	0	6		كيمياء عضوية	۳۳۲ نکیم	٥	2
	6	KCHE 341	Petrochemicals	0	2	2	0	0	2		٦ البتروكيماويات		٦	
	7	KCHE 321	Computer Chemical Process Drawing	0	2	0	4	0	4		٣٢١ نكيم رسم العمليات الكيميائية بالكمبيوتر		γ	
			Total Number of Units		20	15	10	1	26		المجموع			

							No. of Uni	ts						
	No.	Course Code	Course Name	Prereq	و.م	مح	مع	تم	س.أ	المتطلب	اسم المقرر	رمز المقرر	م	
					CRH	L	Р	T	СТН					
	1	ENGL302	English Language (2)	ENGL 301	3	3	0	1	4	۳۰۱ انجل	لغة انجليزية ٢	۳۰۲ انجل	١	lî e
ester	2	MATH 302	Mathematics (2)	MATH 301	3	3	0	0	3	۳۰۱ ریاض	ریاضیات ۲	۳۰۲ ریاض	۲	ان ان
7th Semester	3	STAT 303	Statistics and Probability	0	3	3	0	0	3	•	الإحصاء والاحتمالات	احصا ٣٠٣	٣	لىرىخ. بارىخى
7t	4	KCHE 333	Thermodynamics	KCHE 331	3	3	0	0	3	۳۳۱ نکیم	ثيرموديناميكا	۳۳۳ نکیم	٤	السابع
	5	KCHE 365	Applied Mass Transfer	KCHE 331	3	2	2	0	4	۳۳۱ نکیم	انتقال المادة التطبيقي	٣٦٥ نکيم	٥	
	6	KCHE 322	Computational Method for Engineering Application	0	2	0	4	0	4		التطبيقات الهندسية بالحاسب	۳۲۲ نکیم	٦	
			Total Number of Units		17	14	6	1	21		المجموع			

Department Technical Chemical Engineering

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation General Directorate of Curricula

							No. of Uni	ts						
	No.	Course Code	Course Name	Prereq	و.م	مح	pe	تم	س.أ	المتطلب	اسم المقرر	رمز المقرر	م	
					CRH	L	Р	Т	СТН					ائف
ster	1	GNRL 404	Quality Tools and Applications	0	3	3	0	0	3		أدوات الجودة و تطبيقاتها	٤٠٤عامة	١	7
Seme	2	GNRL 402	Engineering Project Management	0	3	3	0	0	3		إدارة المشاريع الهندسية	۲۰۶عامة	۲	التلر
8th S	3	KCHE 434	Advanced Separation Processes	KCHE 331	3	2	2	0	4	۳۳۱ نکیم	عمليات الفصل المتقدمة	٤٣٤ نکيم	٣	يي الثا
8	4	KCHE 413	Plant Design and Economics	KCHE 331	3	3	0	0	3	۳۳۱ نکیم	تصميم واقتصاديات العمليات الكيميائية	٤١٣ نکيم	٤	ئامن
	5	KCHE 411	Chemical Reaction Engineering	KCHE 331	3	2	2	0	4	۳۳۱ نکیم	هندسة التفاعلات الكيميائية	٤١١ نكيم	٥	
	6	KCHE 444	Water Treatment	0	2	2	0	0	2		معالجة المياه	٤٤٤ نکيم	٦	
			Total Number of Units		17	15	4	0	19		المجموع			
		CTH: Contac	t Hours T: Tutorial Practical :P L: Le	ecture CRH: Cr	edit Hours			ىدات	ىدة، و.م: وح	محاضرة، معتم	تم: تمارین، عم: عملي/ ورش، مح:	ت اتصال أسبوعي	: ساعا	س.أ

							No. of Uni	ts						
	No.	Course Code	Course Name	Prereq	و.م	مح	ρE	تم	س.أ	المتطلب	اسم المقرر	رمز المقرر	م	
					CRH	L	Р	Т	СТН					i.
ster	1	GNRL 403	Communication tools and soft skills	0	2	2	0	0	2	•	مهارات الإتصال	٤٠٣عامة	١	7
ae l	2	KCHE 446	Process Control	KCHE 331	3	2	2	0	4	۳۳۱ نکیم	التحكم في العمليات	٤٤٦ نکيم	۲	التدره
9th Se	3	KCHE 414	Polymer Science	0	3	3	0	0	3	•	علم البوليمر	٤١٤ نکيم	٣	يي التا
6	4	KCHE ***	Elective Course 1	0	2	2	0	0	2	•	مقرر اختياري١	*** نکیم	٤	1
	5	KCHE 465	Applied Materials Science and Corrosion	0	2	2	0	0	2	•	علم المواد و التآكل	٤٦٥ نكيم	٥	
	6	KCHE 491	Graduation Project	KCHE 434	2	1	2	0	3	٤٣٤ نکيم	مشروع التخرج	٤٩١ نكيم	٦	
			Total Number of Units	Total Number of Units		12	4	0	16	المجموع				

Department Technical Chemical Engineering

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation General Directorate of Curricula

Major Applied Chemical Production Engineering

	Total Number of Semesters Units Total Contact Hours × 16 Co-operative Training				Т	СТН		
-					تم	س.أ	جموع الكلي لوحدات البرنامج	मा
					2	82		
Total Contact Hours × 16					المجموع الك		التدربب التعاوني	ساعات الإتصال الكلية × ١٦
1312	0		1312					1811

Elective Courses

						No. of Units			ts					
7	No. Code	Course Name	Prereq	و.م	مح	pe	تم	س.أ	المتطلب	اسم المقرر	رمز المقرر	م	ī	
urses						L	Р	Т	СТН					قررات
tive Co	1	KCHE 424	Writing Skills	0	2	2	0	0	2		مهارات الكتابة الفنية	٤٢٤ نکيم	١	الإختيار
Elect	2	KCHE 461	Renewable Energy	0	2	2	0	0	2		الطاقة المتجدده	٤٦١ نكيم	۲	٠- ية.
		CRH: Cr	redit Hours L: Lecture P: Practical T:	Tutorial CTH:	: Contact H	ours		ىتمدة،	، : وحدات م ه	: محاضرة، و.م	، تم: تمارين، ورش، /عم: عملي مح أسبوعي	ر.أ : ساعات اتصال	×	

Brief description

Course Name		Chemical Processes	Course Code	KCHE 331	Credit Hours	3
Description	on	The course aims to acquire trained calculations. The course submits of systems and dimensions used in it. In addition, it gives the trainee the calculate the chemical composition. In addition, it provides a full explain and its applications on industrial of the course also helps the traineer courses.	detailed expl ndustrial pro e ability to d on of the mix mation of th units whethe	anation of the units cesses. eal with processes verses and solutions. e laws of material areas in single or multiple.	of measurer ariables and nd energy ba	nent how to lance

Course Name		Organic Chemistry	Course Code	KCHE 332	Credit Hours	4
Descripti	on	The course offers comprehensive unchemistry. The course describes characteristics and reactions of alkanes, elimination and nucleophilic substitutions and successive substitutions.	emical bondi alkenes, alky	ng, structure propert	cies, nomencla s, alkyl halide	ature, s,

Course Name		Thermodynamics	Course Code	KCHE 333	Credit Hours	3
Descript	ion	This course aims to provide the traits applications. It explains concept of heat, work, between them. In addition, it provides the trained thermodynamics and its application. Also explains the second law of the with the first law of thermodynamics and its application.	and internal e a detailed e ons on differ ermodynam	energy and shows texplanation of the filent systems.	the relations rst law of and its relat	nip

Course Name		Applied Mass Transfer	Course Code	KCHE 365	Credit Hours	3
Descript	ion	This course introduces the studen their applications in the chemical distillation, evaporation, drying, fl separations. Description of the eq with. This course is supported by labora	industry, sud uidization, s uipment's u	ch as diffusion, abso ize reduction, and n sed for the above o	rption, extra nechanical	ction,

Course Name	Computational Method for Engineering Applications	Course Code	KCHE 322	Credit Hours	2
Descripti	This course provides skills to solve so the computer programs. Also, flowed programs. Use of commercial softw	charts, tables	and calculations car	be done by	•

Course Name	Ch	emical Reaction Engineering	Course Code	KCHE 411	Credit Hours	3
Descripti	on	This course includes the following laws and Stoichiometry, Isotherm data, No isothermal Reactor Design	al Reactor D	esign, Collection and	d Analysis of	-

Course Name		Petrochemicals		KCHE 341	Credit Hours	2
Descripti	ion	This course introduces the studen of petrochemicals production, the processing. It also deals with chemical reaction precursors, and intermediates need the production of selected petroduction of selected petroduction with emphasis on unit production by laboratory experiments.	e raw material raw material ray and conversed for furth the converse ray and cocesses and	als used, their compersion processes that her processing intoong with a local case	oosition, and at produce the petrochemic study, will be	ee als.

Course Name	Adva	anced Separation Processes	Course Code	KCHE 434	Credit Hours	3
Descripti	ion	This subject deals with the application you have learned to the separation considered will include Basic continuous separations. The object of the subject is twofer further develop your ability to approblems.	n of chemic ncepts of Di old: to under	al mixtures. Specification, absorptions absorptions are stand how separations.	fic processes on, adsorption on work, and	n and

Course Name	P	Plant design & Economics	Course Code	KCHE 413	Credit Hours	3	
		The course aims at giving the tra	inee the basic	skills to deal with	the economic	s of	
		optimal chemical processes whe	re they will be	trained on the ste	eps for project	t design	
		and industrial development.					
		The trainee will learn the genera	I points that h	ne should take into	account whe	n	
		designing any project such as security, safety and environmental protection from					
		pollution and provide the necessary services for the project and other considerations.					
Descript	tion	Training will be performed on the estimate of the cost of the project at all stages					
		after taking a general idea of acc	ounting.				
	This course will present a comprehensive study on the process profitability in gener				general		
		and investment costs and approp	oriate alternat	tives.			
		The trainee will also have a clear and enough view for optimal design of equipment					
		used in the factory and find the optimum method to choose necessary materials for					
		manufacturing.					

Course Name		Process Control	Course Code	KCHE 446	Credit Hours	3	
		The aim of this course is to expose	e students to	the concepts of dy	namic behav	ior,	
		physical and empirical modeling, o	computer sir	nulation, measurem	nent and con	trol	
		technology, basic control concept	s, feedback,	feed-forward and st	tability.		
		These are important for understanding of many complex systems of interest in					
		chemical engineering and also to be able to design and operate modem plants.					
Descripti	ion	It includes an overview of process control system design with some illustrative					
		examples and theoretical models of chemical processes.					
		Dynamic behavior of processes an	d feedback	control strategies ar	e also dealt	with.	
		Furthermore, frequency response	methods als	so covered. Perform	ance of labo	ratory	
		experiments is a component of th	is course to	reinforce the studer	nts understar	nding of	
		fundamental principles of process	dynamics a	nd control.			

Course Name		Polymer Science	Course Code	KCHE 414	Credit Hours	3
Descripti	ion	Polymer science is considered in pand chemical fields, due to their exprovides the trainee with the basis hours per week. The trainee is introduced through polymer molecules and the mechanistature and their finished prand mechanical properties, the trained their industrial applications.	oresent-day a conomic imposed to this course of anism of the oducts. Also	oact and various appolymer engineering on the chemistry of ir reactions, and stuthrough the study of	e in the enginal polications. The at the rate of polymers and dies their means of physical, continued in the	is course f two d ethod of hemical

Course Name	A	Applied Materials science & Corrosion	Course Code	KCHE 465	Credit Hours	2	
Descripti	o.m	This course focuses on basic elements of materials science, which relate the materials					
Descripu	UII	properties and types to the micros	scopic behav	vior atoms.			

Course Name		Renewable Energy		KCHE461	Credit Hours	2	
		Renewable Energy is an elective	upper divis	ion course. It is a	necessary c	ourse for	
		Environmental Studies students who are interested in energy as a possible career, and a					
D		useful elective course for engineers interested in renewable energy. This course provides an					
Descripti	on	introduction to energy systems	and renewa	able energy resour	ces, with a	scientific	
		examination of the energy field a	nd an empha	asis on alternate en	ergy sources	and their	
		technology and applications.					

Course Name		Water Treatment	Course Code	KCHE 444	Credit Hours	2			
		This course aims to give the trainee the basic skills for the treatment of wastewaters. In							
Descripti	on	this course training will be carried through theoretical information by two lectures per							
Description	OII	week in addition to training on the	e following s	ubjects: introductio	n to pollution	lution, water			
		pollution, wastewater treatment a	and uses of t	reated waters.					

Courses Detail Description

Department	Chemical Enginee	ering	Major		Chemical F		l Production		
Course Name	Chemical Proces	ses	Course Code		KCHE 331				
D			Credit Hours		3		СТН		3
Prerequisites			CRH	L	3	P	0	T	0
CRH: C	redit Hours L: Lecture	P: Practical	T: Tutorial	CTH: C	Contac	t Hou	ırs	<u> </u>	

Course description:

The course aims to acquire trainee basic skills to do principles technical chemical calculations.

The course submits detailed explanation of the units of measurement systems and dimensions used in industrial processes.

In addition, it gives the trainee the ability to deal with processes variables and how to calculate the chemical composition of the mixtures and solutions.

In addition, it provides a full explanation of the laws of material and energy balance and its applications on industrial units whether single or multiple.

The course also helps the trainee to understand and accommodate other specialized courses.

Topics:

- Units and dimensions
- Chemical compassion
- Material balances without chemical reaction
- Material balances with chemical reaction
- Energy balances

Experiments: If applicable, it will support the course topics.

References:

- Richard M. Felder and Ronald W. Rousseau; "Elementary principle of chemical processes",
 John Wiley, 3th Edition, 2005
- David M. Himmelblau; "Basic Principles and Calculations in Chemical Engineering", McGraw-Hill, 7th Edition, 2004

Details of Theoretical Contents				
	Contents	Hours		
1	Basic chemical calculations:	8		
	• Units and Dimensions:			
	 Introduction 			
	 Systems of units 			
	 Conversion of units 			
	 Dimensional homogeneity 			
	Chemical Composition:			
	 Mole and molecular weight 			
	 Mass fraction and mass percent 			
	 Mole fraction and mole percent 			
	 Molecular weight of mixture 			

2	Material Balance:	20
	Material balance without chemical reaction:	
	General concept of material balance	
	o General low of material balance	
	 Material balance in continuous processes at steady state for 	
	one unit	
	Material balance in continuous processes at steady state for:	
	 Multiple units 	
	Recycle and bypass calculations	
	Material balance with chemical reaction:	
	 Stoichiometry 	
	 Limiting reactant 	
	 Excess reactants 	
	o Conversion	
	 Multiple reactions 	
	o Yield	
	o Selectivity	
	Recycle and purge	
3	Energy balance:	20
	• Types of energy	
	General low of energy balance	
	Energy balance on closed systems without chemical reaction	
	Energy balance on open systems without chemical reaction	
	Enthalpy calculation	
	Simultaneous material and energy balances	
	Heat of reaction	
	Heat of formation	
	Heat of combustion	
	Material balance with chemical reaction	
		48
Textbo	Richard M. Felder and Ronald W. Rousseau; "Elementary principle of chemi	cal processes",
LAUD	John Wiley, 3th Edition, 2005	

Department	Che	mical Enginee	ering	Major	Chemical Production					
Course Name	O	rganic Chemis	try	Course Code		KCHE 332				
Prerequisites				Credit Hours		4		СТН		6
				CRH	L 2 P 4			T	0	
CRH: Credit Hours Lecture P: Practical T: Tutorial CTH: Contact Hours										

Course description:

The course offers comprehensive understanding of the basic principles of organic chemistry. The course describes chemical bonding, structure properties, nomenclature, synthesis, and reactions of alkanes, alkenes, alkynes, alcohols, ethers, alkyl halides, elimination and nucleophilic substitution reactions., kinetic and thermodynamic aspects governing these reactions.

Topics:

- Hydrocarbons
- Aromatic hydrocarbons
- Alkyl halides
- Alcohols and phenols
- Aldehydes and Ketones
- Carboxylic Acids and their derivatives
- Amines

Experiments:

References:

William H. Brown, Introduction to organic chemistry, 1996

Herbert Meislich, Howard Nechamkin ,Jacob sharefkin, organic chemistry, second edition

		Detailed of Theoretical Contents	
No.		Contents	Hours
	Structure and	properties	4
	• Carbo	n compounds	
	• Struct	ure of atoms	
	Coval	ent bonds	
	• Functi	on groups	
		ll charge	
		of organic reactions	
	Hydrocarbons		2
	Alkan		
	0	Structural isomerism	
	0	Nomenclature of alkanes	
	0	Resource of alkanes	
	0	Synthesis of alkanes	
	O	Physical properties	
		es and alkynes	2
	0	Structural Nomenclature	
	0		
	0	Synthesis Thermal Cracking	
		Reaction of alkenes and alkynes	

Aromatic	hydrocarbons	4
	troduction	
	enzene	
• A ₁	romatic properties	
	ysical properties	
	omenclature derivatives of benzene	
• Sy	enthesis of aromatic composite	
-	eaction of aromatic composite	
Alkyl hali		4
• In	troduction	
• Ph	ysical properties	
	enthesis of Alkyl halides	
-	eaction of Alkyl halides	
	and phenols	4
	troduction	
• No	omenclature	
	ysical properties	
	rnthesis	
Ethers		2
• In	troduction	
• No	omenclature	
• Ph	ysical properties	
	enthesis	
Aldehyde	s and Ketones	4
• In	troduction	
• No	omenclature	
• Ph	ysical properties	
• Sy	rnthesis	
Carboxyli	c Acids and their derivatives	4
• In	troduction	
• No	omenclature	
• Ph	ysical properties	
• Sy	rnthesis	
• Re	eaction	
Amines		2
• In	troduction	
• No	omenclature	
• Ph	ysical properties	
• Sy	nthesis	
• R6	eaction	
		32
	William H. Brown , Introduction to organic chemistry, 1996.	
Textbook:	Herbert Meislich, Howard Nechamkin "Jacob sharefkin, organic chemist edition.	ry, second

		Detailed of Practical Contents			
No.		Contents	Hours		
	Qualitati	ve analysis	16		
	Function	Functional group			
	Synthesi	24			
			64		
To	extbook:	William H. Brown , Introduction to organic chemistry, 1996. Herbert Meislich, Howard Nechamkin ,Jacob sharefkin, organic chemistry edition.	y, second		

Major Applied Chemical Production Engineering

Department	Chemic	cal Enginee	ering	Major	Chemical Production					
Course Name	Then	modynami	cs	Course Code		KCHE 333				
Duono aniaito a	WOLLE 221		Credit Hours	3			СТН		3	
Prerequisites	K	CHE 331		CRH	L	3	P	0	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours										

Course description:

This course aims to provide the trainee with the basic concepts of thermodynamics and its applications. It explains concept of heat, work, and internal energy and shows the relationship between them.

In addition, it provides the trainee a detail explanation of the first law of thermodynamics and its applications on different systems.

Also explains the second law of thermodynamics, its applications, and its relationship with the first law of thermodynamics.

It discusses also some steam cycles and its industrial applications.

Topics:

- Basic Thermodynamics Terminologies
- First law of thermodynamics
- Gases and single phase systems
- Second law of thermodynamics
- Steam tables and vapor cycles

Experiments: If applicable, it will support the course topics.

References:

- R. Joel, "Basic Engineering Thermodynamics", Dorling Kindersley (India), 5th Ed, 2008.
- J.M. Smith and H.C. Van Ness and M.M. Abbott, "Introduction to Chemical Engineering Thermodynamics", McGraw-Hill, 6th Ed., 2005.
- Y.A. Cengel and M.A. Boles, "Thermodynamics: An Engineering Approach ", McGraw-Hill, 25th Ed., 2006.

	Details of Theoretical Contents	
	Contents	Hours
1	Basic concepts and Terminologies of thermodynamics:	8
	• Introduction	
	 Terminologies of thermodynamics 	
	 Relation between work and the pressure-volume diagram 	
	 Relationship between work and the polytrophic process 	
	 Relationship between work and the hyperbolic process 	
	 Statement of the Zeroth law of thermodynamics 	
2	First low of thermodynamics:	8
	 Definition of closed and open-systems 	
	 Energy forms in thermodynamic systems 	
	 Statement of the First law of Thermodynamics 	
	 Applications of the first law to a closed- system and an open- system 	
3	Gases and Single-Phase Systems:	8
	 The gas laws and their applications 	
	• Statement of Joule's Law for a gas	
	 Definitions of the specific heat capacities of a gas 	
	 Application of the Non-Flow Energy Equation to a gas: 	
	 Subjected to constant volume heating 	

	 Subjected to constant pressure heating 	
	 Undergoing a polytrophic process 	
	 Under adiabatic conditions 	
	 Under isothermal conditions 	
4	Second law of thermodynamics:	10
	 The principle of the thermodynamic engine and calculation of thermal efficiency 	
	Definition of reversible and irreversible processes	
	Statement of the Second Law of Thermodynamics	
	Relationship between the first law and the second law	
	The concept of Entropy and the Third Law of Thermodynamics	
	Entropy as a function of temperature and volume	
	Entropy as a function of temperature and pressure	
5	Steam tables and Vapor Cycles:	14
	Definition of steam tables	
	Properties of saturated steam and superheated steam	
	Main features of the steam power plant	
	The Carnot steam power cycle and efficiency	
	Thru Rankin steam power cycle and efficiency	
	Basic definitions related to refrigeration processes	
	Characteristics and examples of refrigerants	
	The vapor compression refrigeration cycle	
	, , , , , , , , , , , , , , , , , , , ,	48
Tex	tbook: R. Joel, "Basic Engineering Thermodynamics", Dorling Kindersley (India),	5th Ed, 2008.

Major Applied Chemical Production Engineering

Department	Chemical Enginee	ering	Major		Chemical Production				
Course Name	Applied mass trai	nsfer	Course Code		KCHE 365				
D	KCHE 331		Credit Hours	3			СТН		4
Prerequisites			CRH	L	2	P	2	Т	0
CRH: C	⊺: Tutorial	CTH: 0	Conta	ct Ho	urs				

Course description:

This course introduces the student to basic principles of mass transfer operations and their applications in the chemical industry, such as diffusion, absorption, extraction, distillation, evaporation, drying, fluidization, size reduction, and mechanical separations.

Description of the equipment's used for the above operations is also dealt with.

This course is supported by laboratory experiments and exercises.

Topics:

- Principles of Mass Transfer
- Evaporation
- Drying of process Materials
- Membrane Separation Process
- Experiments

Experiments: If applicable, it will support the course topics.

References:

Transport Processes and Separation Process Principles , C.J. Geankoplis, Prentice , Hall, 4th Edition, 2003

	Details of Theoretical Contents	
	Contents	Hours
1	introduction to Mass Transfer and Diffusion:	8
	Molecular Diffusion in Gases	
	Molecular Diffusion in Liquids	
	 Molecular Diffusion in Biological Solutions and Gels 	
	 Molecular Diffusion in Solids 	
	 Numerical Methods for Steady- State Molecular Diffusion in Two Dimensions. 	
2	Types of Evaporation Equipment and operation Methods:	8
	Overall Heat Transfer Coefficient in evaporators	
	Calculation Methods for Single-Effect Evaporators	
	 Calculation Methods for Multiple-Effect Evaporators 	
	Condensers for Evaporators	
	 Evaporation of Biological Materials 	
	 Evaporation using Vapor Recompression 	
3	Introduction and Methods of Drying:	8
	Equipment for Drying	
	Vapor Pressure of Water and Humidity	
	Equilibrium Moisture Content of Materials	
	• Rate of – Drying Curves	
	 Calculation Methods for Constant – Rate Drying Period 	
	 Calculation Methods for Falling – Rate Drying Period 	
	 Combined Convection ,Radiation ,and Conduction Heat Transfer in 	
	Constant – Rate Period	
	 Drying in Falling Rate Period by Diffusion and Capillary Flow 	

	 Equations for Various Types of Dryers 	
	Freeze – Drying of Biological Materials	
	 Unsteady – State Thermal Processing and Sterilization of Biological Materials 	
4	Introduction of types of Membrane Separation Processes:	8
	Liquid Permeation Membrane Separation Processes	
	Gas Permeation Membrane Processes	
	Complete-Mixing Model for Gas Separation by Membranes	
	Complete-Mixing Model for Multicomponent Mixtures	
	 Cross – Flow model for Gas Separation by Membranes 	
	Derivation of Equations for Countercurrent and Cocaaurrent Flow for	
	Gas Separation by Membranes	
	Derivation of Finite-Difference Numerical Method for Asymmetric	
	membranes	
		32
Textb	Transport Processes and Separation Process Principles , C.J. Geankoplis 4 th Edition, 2003	s, Prentice, Hall,

		Details of Practical Contents	
		Contents	Hours
1	1st Ex	periment: Verification of the Diffusion Phenomena	4
2	2nd E	xperiment: Determination of the Diffusivity of Selected Gases	4
3	3rd E	xperiment: Determination of the Diffusivity of Liquids	4
4	4th Ex	xperiment: Determination of the Liquid Film Mass Transfer icient	4
5		xperiment: Verification of the Principles of Evaporation Using Water	4
6	6th Ex Proces	xperiment: Verification of the Principles of Steam Distillation ss	4
7	7th Ex	xperiment: Calculation of Selected Parameters of Distillation	4
8		xperiment: Verification of the Distribution Law of a Solute en Two Immiscible liquids	4
	1		32
Text	book:	Transport Processes and Separation Process Principles , C.J. Geankoplis, Pren Edition, 2003	tice, Hall, 4th

Major Applied Chemical Production Engineering

Department	Chemical Engineering	Major	Chemical Production					ļ
Course Name	Computer Chemical Processes Drawing	Course Code		KCHE 321				
D		Credit Hours		2		СТН		4
Prerequisites		CRH	L	0	P	4	T	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Course description:

This course mainly focuses on exposure of students to various equipment used in chemical industries and prepares them to practice making of the detailed equipment drawings.

The students can be used several softwares for making the computerized drawing such as chemcad, Aspen tech, solid edge and SmartDraw for Windows etc.

Topics:

- Essentials of Drawing
- Equipment Symbols
- Proportionate Drawings of Some Parts of Equipment
- Proportionate Drawings of Some Common Equipment
- Dimensioned Drawings of Some Pipe Fittings
- Dimensioned Drawings of Some Valves
- Dimensioned Drawings of Some Pumps
- Introduction to Computer Aided Design and Drawing

References:

- 1. Douglas, J. Conceptual Design of Chemical Processes. New York, NY: McGraw-Hill Science/Engineering/Math, 1988. ISBN: 0070177627.
- 2. Seider, W. D., J. D. Seader, and D. R. Lewin. Product and Process DesignPrinciples: Synthesis, Analysis, and Evaluation. 2nd ed. New York, NY: Wiley,2004
- 3. Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz. Analysis, Synthesis, and Design of Chemical Processes, 2nd Edition, 2002, Prentice Hall
- 4. L.T. Biegler, I.E. Grossmann and A.W. Westerberg, Systematic Methods of Chemical Process Design, Prentice Hall, 1997
- 5. SmartDraw for Windows Desktop, https://www.smartdraw.com/

	Detailed of Theoretical Contents					
No.	Contents	Hours				
	Essentials of Drawing:					
	1.1 Compass tools					
	1.2 Mini drafter					
	1.3 Neatness					
	1.4 Finish					
	1.5 Drawing Sheets					
1	1.6 Layout of drawing sheets	4				
	1.7 Revision panel					
	1.8 Title block					
	1.9 Numbering of sheets					
	1.10 Parts List					
	1.11 Numbering and Referencing					
	1.12 Referencing					

	ì
1.14 Lines and Symbols Used in Dimensioning	
1.15 Representation of Section Plane	
Equipment Symbols:	
2 2.1 Important Equipment Symbols	4
2.2 Piping Symbols and Pipe Joints	
Proportionate Drawings of Some Parts of Equipment:	
3.1 Vessel components	
3.1.1 Vessel Openings and Nozzle Attachments	
3.1.2 Pad Attachments to Vessel Wall with Tapped Holes for Studs	
3.1.3 Extended Nozzle with Flanged Joint	
3.1.4 Nozzle with Flanges at Either End	8
3.1.5 Nozzle with Bent Tube Inside and Flanged Attachment	o
3.1.6 Manhole and Cover	
3.1.7 Flanged Cover for the Vessel	
3.1.8 Loose Flange for Vessel	
3.1.9 Jacketed Vessel	
3.2 Pipe Flanges	
Proportionate Drawings of Some Common Equipment:	
4.1 Shell and tube heat exchanger	
4.1.1 Schematic Shell and Tube Heat Exchanger	
4.2 Typical 1–1 Shell and Tube Heat Exchanger	
4.3 A typical photo of arrangement of tubes in the heat exchanger	
4.4 Reboiler with internal floating head	
4.5 Heat Exchanger with expansion bellows (1-1 STHE)	
4.6 Double pipe heat exchanger	
4 4.7 Reaction vessels	12
4.7.1 Typical Reaction Vessel	
4.8 Evaporators	
4.8.1 Standard Short Tube Vertical Evaporator	
4.8.2 Tube Layout of Short Tube Vertical Evaporator	
4.9 Long tube vertical evaporator	
4.10 External calendria vertical short tube evaporator	
4.11 Basket Type Short Tube Vertical Evaporator	
4.12 Distillation or Fractionating column	
Dimensioned Drawings of Some Pipe Fittings:	
5.1 Pipe joints	
5.1.1 Flanged Pipe Joint	4
5.1.2 Assembled View of Flanged Pipe Joint	6
5.1.3 Hydraulic Pipe Joint	
5.1.4 Assembled View of Hydraulic Pipe Joint	
Dimensioned Drawings of Some Valves:	
6.1 Valves	4
6.1.1 Gate Valve	6
6.1.2 Non-rising Gate Valve Description	

Major Applied Chemical Production Engineering

	6.1.3 Part	s Drawing of Non-rising Gate Valve					
	6.2 Stop V	Valve					
	6.2.1 Part	Drawing of Stop Valve: drg 1 of 2 and drg 2 of 2					
	6.3 Junction stop valve .4 Non-return valve (NRV) 6						
	6.5 Feed	check valve					
	6.6 Rams	bottom safety valve					
	Dimensio	oned Drawings of Some Pumps:					
	7.1 Pump						
	7.1.1 Cen	trifugal Pump					
	7.1.2 Des	cription of Centrifugal Pumps					
7	7.2 Gear 1	pump	6				
_ ′	7.2.1 Theory of Operation						
	7.2.2 Description of Parts of Gear Pump						
	7.3 Reciprocating pump						
	7.3.1 Photographic Views of Some Reciprocating Pumps						
	7.4 Plung	er or Ram Pump					
	Introduc	tion to Computer Aided Design and Drawing:					
	8.1 Introd	luction					
	8.2 Drafti	ng and Documentation					
8	8.3 Stream	nlined Drawing Creation	18				
0	8.4 Docui	menting the Largest Assemblies	10				
	8.5 Drawi	ing Automation with Quick Sheet Templates					
	8.6 Softw	are System Requirements					
	8.7 applic						
			64				
		SURESH C. MAIDARGI- "CHEMICAL PROCESS EQUIPMENT—DE					
Te	xtbook:	DRAWING", VOLUME I, SECOND EDITION", PHI LEARNING PRIVA	TE LIMITED,				
		DELHI, 2016					

22

Department	Chen	nical Engine	ering	Major	(Chemical Production				
Course Name	P	Petrochemica Petro	ıls	Course Code		KCHE 341				
D				Credit Hours	2			СТН		2
Prerequisites				CRH	L	2	P	0	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours										

Course description:

This course introduces the student to the various processes involved in the technology of petrochemicals production, the raw materials used, their composition, and processing. It also deals with chemical reactions and conversion processes that produce the precursors, and intermediates needed for further processing into petrochemicals.

The production of selected petrochemicals, along with a local case study, will be covered with emphasis on unit processes and operations employed. The course is supported by laboratory experiments.

Topics:

- Raw Materials for Petrochemicals.
- Hydrocarbon and Non-Hydrocarbon Intermediates for Petrochemicals.
- Petrochemicals from Basic Raw Materials.
- Synthesis Gas.
- Ammonia.
- Urea.
- Ethylene and Polyethylene.

Experiments: If applicable, it will support the course topics.

References:

1) Petrochemical Process Technology, by Mall I D, Macmillan, Inc., 1st Edition, 2008

	Details of Theoretical Contents	
	Contents	Hours
1	Raw materials for petrochemical: Introduction. Natural gas. Properties of natural gas. Natural gas treatment processes: Sweetening process. Demethanization process. Fractionation process. Refrigeration process. Crude oils: Composition of crude oils. Properties of crude oils. Crude oil classification. Coal, oil shale, tar sand and gas hydrates.	6
2	Hydrocarbon and Non-Hydrocarbon Intermediates for Petrochemicals processes: • Physical separation processes. • Conversion process.	6

	 Production of olefins. Production of hydrogen. Production of sulfur. Production of carbon black. 	
3	Petrochemicals from Basic Raw Materials: • Petrochemicals based on methane. • Petrochemicals based on ethylene. • Petrochemicals based on propylene. • Petrochemicals based on C4 olefins and olefins. • Petrochemicals based on benzene toluene and xylene.	4
4	Synthesis Gas: Introduction. Production processes: Steam reforming process. Partial combustion process. Economics of synthesis gas production.	4
5	 Ammonia: Introduction. Description of the production process of ammonia. Reaction and equilibrium conditions in ammonia synthesis. Effect of catalysis on the rate of reaction in ammonia synthesis. Design and operation of an ammonia synthesis converter. Uses and economics of ammonia production. 	4
6	 Urea: • Introduction. • Description of the production process of urea. • Major engineering problems associated with urea production. • Growth of urea production and important uses. 	4
7	 Ethylene and Polyethylene: Ethylene properties and sources. Manufacture of ethylene. Polyethylene properties and basic reactions. Production processes of polyethylene: High-pressure polymerization process. Medium – pressure polymerization process. Low – pressure polymerization process. Comparison of polyethylene polymerization processes. Common uses of polyethylene. 	4
		32
Textb	Petrochemical Process Technology, by Mall I D, Macmillan, Inc., 1st Ed	ition, 2008

Department	Chen	nical Engine	ering	Major	(Chemical Production				
Course Name	W	ater Treatm	ent	Course Code		KCHE 444				
				Credit Hours	2 2		СТН		2	
Prerequisites				CRH L			P	0	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours										

Course description:

This course aims to give the trainee the basic skills for the treatment of wastewaters. In this course, training will be carried through theoretical information by two lectures per week in addition to training on the following subjects: introduction to pollution, water pollution, wastewater treatment and uses of treated waters.

Topics:

- Water pollution
- Wastewater treatment
- Design of wastewater station
- Disposal of the products of treatment
- Uses of treated water

Experiments: If applicable, it will support the course topics.

References:

1) Wastewater Engineering: Treatment and Reuse by George Tchobanoglous, Franklin L. Burton, and H. David Stensel, 2002

	Details of Theoretical Contents	
	Contents	Hours
1	Water pollution:Sources of water pollution.Wastewaters.	2
2	Philosophy of wastewater collection and treatment: • Planning and design of sewage. • Philosophy of sewage treatment.	4
3	Primary treatment of wastewater: • Sedimentation.	4
4	 Secondary treatment of wastewater: Fundamentals of applied microbiology. Description of the activated sludge process. Design of activated sludge systems. The design of the aerator to the activated sludge process. Filtration by distillation and design fundamentals. Other air treatment systems. Fundamentals of anaerobic treatment. Design of anaerobic reactors. Design of UASB reactors. 	6
5	 Advanced treatment of wastewater: Nitrification: Description of the process and design. DE nitrification: Description of the process and design. Removal of phosphorus and other advanced treatment. 	6

6	 Residuals Management: Management basics of remaining. Design of residual management operation. 	
7	Design of wastewater treatment plant: • Disposal of treatment products. • Uses of treated wastewater.	6
		32
Textl	Wastewater Engineering: Treatment and Reuse by George Tchobanoglous, Franklin L. Burton, and H. David Stensel, 2002	

Major Applied Chemical Production Engineering

Department	Chemical E	ngineering	Major	Chemical Production					
Course Name	Computational Me Engineering Applic	Course Code		KCHE 322					
D			Credit Hours		2		CTH		4
Prerequisites			CRH	L	0	P	4	T	0
CRH: C	CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours								

Course description:

This course provides skills to solve some selected chemical engineering problems by use the computer programs. Also, flowcharts, tables and calculations can be done by those programs. Use of commercial software packages such as Excel and Matlab.

Topics:

- Excel Program
- Matlab Program

.

Experiments:

- Excel applications
- Matlab applications

References: Gilat, A., "MATLAB: An introduction with Applications", 4th edition, 2010

	Detailed of Practical Contents	
No.	Contents	Hours
1	The computer in chemical engineering	8
	The Importance	
	Used Programs	
2	Basics of Excel program	28
	Introduction	
	Worksheets & Workbooks	
	• Tables	
	• Charts	
	Formula & Calculations	
3	Matlab Program	28
	Introduction	
	• Flowcharts	
	Matrices	
	Charts & Tables	
	Solving Equations (Linear)	
	• Solving Equations (Non – Linear)	
		64

Major Applied Chemical Production Engineering

Department	Chemical Enginee	Major	Chemical Production						
Course Name	Advanced Separation Proc	Course Code	KCHE 434						
D	equisites KCHE 331		Credit Hours	3			СТН		4
Prerequisites			CRH	L	2	P	2	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

Course description:

This subject deals with the application of the science and engineering science that you have learned to the separation of chemical mixtures. Specific processes considered will include Basic concepts of Distillation, absorption, ionic separations, and other techniques.

The object of the subject is twofold: to understand how separation work, and to further develop your ability to apply basic principles to the solution of specific problems.

Topics:

- Introduction
- Basic concepts of Distillation
- Absorption
- Separation By Adsorption Techniques
- Ionic Separations
- Other Techniques

References:

- Lacey, R.E. and S.Loaeb "Industrial Processing with Membranes", Wiley -Inter Science, New York, 1972.
- King, C.J. " Separation Processes ", Tata McGraw Hill Publishing Co., Ltd., 1982.
- Ronald W.Roussel " Handbook of Separation Process Technology ", John Wiley, New York, 1987.
- Kestory, R.E. "Synthetic polymeric membrances", Wiley, New York, 1987.
- Osadar, Varid Nakagawa I " Membrance Science and Technology ", Marcel Dekkar (1992).
- -Seader, J. D., and Ernest J. Henley. *Separation Process Principles*. New York, NY: Wiley, 1998. ISBN: 9780471586265.

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	Introduction:	6
	Review of conventional processes, Recent advances in separation techniques based on size,	
	special characteristics of substances, Process surface properties, ionic properties and other	
	cross flow filtration, cross flow electro filtration, dual concept, Theory and equipment used in	
	solid - liquid separations involving a second liquid, Siro-floc functional filter, Surface based	
	filter.	
2	Basic concepts of Distillation:	6
	Vapour - Liquid equilibrium pressure - temperature -concentration - phase diagram - isothermal	
	and isobaric equilibrium - Relative Volatility - Raoult's law - ideal solutions deviations from	
	ideality - Minimum and maximum boiling azeotropes - Partially miscible liquids distillation -	
	Insoluble liquids(Steam distillation) - Enthalpy - concentration diagrams - Treatment of	
	multicomponent systems-Different distillation Methods : Flash Vapourisation of binary mixture -	
	Simple distillation of binary mixtures -Vacuum distillation - Continuous rectification methods -	
	brief discussion on general characteristics of tray and packed tower - Azeotropic and extractive	
	distillation, low pressure distillation and molecular distillation. Multistage Tray tower Design :	
	Material and enthalpy balance of a fractionator - Ponchon and Savarit and McCabe - Thiele	
	Method -Enriching section with total condenser and reflux below the bubble point - partial	
	condenser - Stripping section. Complete fractionation- Feed below bubble point - Feed tray	
	location - Effects of reflux ratio - total reflux - minimum reflux - Optimum reflux. Reboiler	

Techn

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation General Directorate of Curricula

	arrangemen	ts - use of open steam - Use of multiple feeds - efect of heat loss - Introduction of feed					
	and its influ	ence on operating lines - q-lines and location of tray - Fractionation of azeotropic and					
		scible binary mixtures - Tray efficiencies. Continuous Contact Equipment: Concepts					
	of transfer	units - HTU and NTU - and height of the enriching section and stripping section -					
	Graphical n						
3	Separation	n by Absorption:	6				
	Equilibrium	a solubility of gases in liquids- Selection of solvent for absorption and stripping-					
	Design of s	ingle stage counter-current flow absorption tower (packed tower)- Design of packed					
	tower- Desi	gn of packed tower based on overall mass transfer coefficient- Counter-current					
	multi-stage	absorption (Tray absorber)- Continuous contact equipment- Absorption with					
	chemical reaction- Absorption accompanied by irreversible m th order reactions- Absorption						
	resistance.						
4	Separation	n By Adsorption Techniques:	6				
	adsorbents,	Normal adsorption techniques, Affinity Mechanism, Types and choice of					
	chromatogr	aphy. Types of equipment and commercial processes, chromatography and immune					
	and process	economics. Recent advances					
5	Ionic Sepa	arations:	8				
	Controlling	factors, Applications, Types of equipment employed for electrophoresis, Di-					
	electro dialy	ysis, Commercial Processes. electrophoresis, Ion exchange chromatography.					
			30				
		-Schoew, H.M " New Chemical Engineering Separation Techniques ",					
		Interscience Publishers, 1972.					
	Textbook: -Basic Principles Of Membrane Technology, Marcel Mulder, Kluwer Academi						
	Publishers, 1997						
		1 dononoro, 1777					

	Detailed of Practical Contents					
No.	Contents	Hours				
1	Distillation experiment using pilot plant : Determination of VLE, steam requirement	8				
	and vapourisation efficiency, efficiency steam distillation, verification of Rayleigh's					
	equation for simple distillation, Distillation in packed columns, HETP.					
2	Absorption experiment using pilot plant: Verification of design equation for height	8				
	of packing in packed tower absorption of ethanol in water, absorption of carbon					
	dioxide in sodium carbonate solution. Surface evaporation - Free convection mass					
	transfer.					
3	Adsorption : Determination of adsorption isotherm	8				
4	Application on Ion Exchange Chromatography	8				
		32				
Textbook: Ing. Reinhard Billet "Packed Towers: In Processing and Environmental Technology", VCF Verlagsgesellschaft mbH, Weinheim, 2005						

Major Applied Chemical Production Engineering

Department	Chen	nical Engine	ering	Major	C	Chemical Productio			ıctio	n
Course Name	Pe	olymer Scien	ice	Course Code]	KCH	E 414	4	
D			Credit Hours	3			СТН		3	
Prerequisites				CRH	L	3	P	0	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours										

Course description:

Polymer science is considered in present-day an important science in the engineering and chemical fields, due to their economic impact and various applications.

This course provides the trainee with the basic topics of polymer engineering at the rate of two hours per week. The trainee is introduced through this course on the chemistry of polymers and polymer molecules and the mechanism of their reactions, and studies their method of manufacture and their finished products. Also through the study of physical, chemical and mechanical properties, the trainee can compare the different types of polymers and their industrial applications.

Topics:

- Introduction to polymer science.
- Molecular weight of polymers.
- Polymers reactions.
- Thermal transition in polymers.
- Polymerization.
- Polymers properties and their applications.

Experiments: If applicable, it will support the course topics.

References:

1) Ebewele, R., "Polymer Science and Technology", CRC Press, Florida, 2015.

	Details of Theoretical and practical Contents	
	Contents	Hours
1	 Introduction to polymers: Importance of polymers. Definitions. Degree of polymerization. Copolymers. Types of polymers (thermoplastics, thermosets, elastomers). 	6
2	 Molecular weight of polymers: Effect of molecular weight. Calculation of molecular weight average. Practical measurement of molecular weight. 	9
3	Polymerization reactions: • Step-growth reaction. • Chain reaction. • Copolymers reactions and factors affecting them. • Homogeneous and heterogeneous polymerization.	9
4	 Thermal transitions in polymers: Glass transition temperature. Factors affecting glass transition temperature. Boiling point. 	6

5	 Polymer processing. Injection molding. Blow molding. Rotational molding. Forming. 	9
6	Polymer properties and applications: • Properties of thermoplastic. • Examples and applications. • Thermosets properties. • Examples and applications. • Elastomers properties. • Examples and applications.	9
		48
Text	book: Ebewele, R., " Polymer Science and Technology", CRC Press, Florida, 201.	5.

Major Applied Chemical Production Engineering

Department	Chemical Engineering	ng	Major		Chemical Production				
Course Name	Chemical Reaction Engir	neering	Course Code	KCHE 411					
D	Credit Hours		3			СТН		4	
Prerequisites	KCHE 331		CRH	L	2	P	2	T	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

Course description:

This course includes the following: Mole Balances, Conversion and Reactor Sizing, Rate laws and Stoichiometry, Isothermal Reactor Design, Collection and Analysis of Rate data, Nonisothermal Reactor Design, Catalysis and catalytic reaction.

Topics:

- Mole Balances
- Conversion and Reactor Sizing
- Rate laws and Stoichiometry
- Isothermal Reactor Design
- No isothermal Reactor Design
- Catalysis and Catalytic Reaction

Experiments: if applicable it will support the course topics.

References:

• H.ScottFogler ((Elements of Chemical Reaction Engineering)) 4th Edition, 2006

•	Details of Theoretical and Practical Contents		
	Contents	Hours	
1	Mole Balances (Rate law Definition .and Equations ,Batch Reactors and continuous Reactor)	10	
2	Conversion and Reactor Sizing (Definition, Design Equation of Batch System and Flow system, Reactor in Series)	10	
3	Rate laws and Stoichiometry (Basic Definitions ,Stoichiometry table)	10	
4	Isothermal Reactor Design (Design structure for Isothermal reactors, Scale-up of liquid phase, Design of CSTR)	10	
5	Nonisothermal Reactor Design (Energy Balance,nonisothermal continuous-flow reactors at steady state,unsteady state operation,multiple steady states).	12	
6	Catalysis and Catalytic Reaction (Definitions and properties, steps in a catalytic reaction, Rate law synthesis, mechanism and rate limtingstep, catalyst reactivation)	12	
		64	
Textbook: H.ScottFogler ((Elements of Chemical Reaction Engineering)) 4 th Edition, 2006			

Department	Che	emical Enginee	ring	Major		Chemical Production				
Course Name		Process control		Course Code		KCHE 446				
D		VOLE 221		Credit Hours	3			СТН		4
Prerequisites		KCHE 331	CRH	L	2	P	2	Т	0	
CRH: Credit Hours L: Lecture P: Practical T: Tutori						Conta	ct Ho	urs		

Course description:

The aim of this course is to expose students to the concepts of dynamic behavior, physical and empirical modeling, computer simulation, measurement and control technology, basic control concepts, feedback, feed-forward and stability.

These are important for understanding of many complex systems of interest in chemical engineering and to be able to design and operate modem plants.

It includes an overview of process control system design with some illustrative examples and theoretical models of chemical processes.

Dynamic behavior of processes and feedback control strategies are also dealt with.

Furthermore, frequency response methods also covered. Performance of laboratory experiments is a component of this course to reinforce the students understanding of fundamental principles of process dynamics and control.

Topics

- Introduction to Process Control
- Theoretical Models of Chemical Processes
- Laplace Transforms
- The Transfer Function and state-space models
- Dynamic Behavior of First-Order and Second-Order processes
- Dynamic Behavior and Stability of Closed-Loop Control Systems
- PID Controller Design, Tuning, and Troubleshooting
- Frequency Response Methods
- Control System Design Based on Frequency Response Analysis

Experiments: If applicable, it will support the course topics.

References:

- Instrumentation for Process Measurement and Control, Norman A. Anderson, 3rd Ed., CRC Press LLC, 1998.
- Modern control Engineering, K. Ogata, 4th Edition, Prentice-Hall, Inc., 2002
- Design of Feedback Control Systems, R. T. Stefani, B. Shahian, and G. H. Hostetter, 4th Edition, Oxford Univ. Press. Inc., 2002

Details of Theoretical Contents				
	Contents	Hours		
1	Introduction to Process Control	4		
	 Representative process control problems 			
	 Illustrative example of a blending process 			
	 Classification of process control strategies 			
	Illustrative example of a distillation column			
	The hierarchy of process control activities			
	An overview of control system design			
2	Theoretical Models of Chemical Processes	4		
	The rationale for dynamic process models			
	General modeling principles			
	 Degrees of freedom in modeling 			

	Dynamic models of representative processes	
	Solution of dynamic models and the use of digital simulators	
3	Laplace Transforms	4
	The Laplace transform of representative functions	
	Solution of differential equations by Laplace transform techniques	
	Partial fraction expansion	
	Other Laplace transform properties	
	• 5. A transient response example	
4	The Transfer Function and state-space models	4
	Development of transfer functions	
	Properties of transfer functions	
	Linearization of nonlinear models	
	State-space and transfer function matrix models	
5	Dynamic Behavior of First-Order and Second-Order processes	3
	Standard process inputs	
	Response of first - order processes	
	Response of integrating processes	
	Response of second - order processes	
6	Dynamic Behavior and Stability of Closed-Loop Control Systems	3
	Block diagram representation	
	Closed-loop transfer functions	
	Closed-loop responses of simple control systems	
	Stability of closed-loop control systems	
	Root locus diagrams	
7	PID Controller Design, Tuning, and Troubleshooting	3
	Performance criteria for closed-loop systems	
	Model-based design methods	
	Controller tuning relations	
	Controllers with two degrees of freedom	
	On-line controller tuning	
	Guidelines for common control loops	
	Troubleshooting control loops	
8	Frequency Response Methods	3
•	Sinusoidal forcing of a first-order process	-
	Sinusoidal forcing of an nth-order process	
	Bode diagrams	
	Frequency response characteristics of feedback controllers	
9	Control System Design Based on Frequency Response Analysis	4
	Closed-loop behavior	•
	Bode stability criterion	
	Quist stability criterion	
	Gain and phase margins	
	 Closed-loop frequency response and sensitivity functions Robustness analysis of control systems 	
	* Robustiless aliarysis of control systems	32
Textbo	Instrumentation for Process Measurement and Control, Norman A. Anderson, 3: LLC, 1998.	

	Details of Practical Contents					
	Contents	Hours				
1	Operation of the control manual valve and knowledge of its properties	4				
2	Operation of an electric control valve 4					
3	Determination of Cv flow coefficient of valves	4				
4	Operation of engine valves and the study of its properties	4				
5	Control of the liquid level in a tank using the two-mode gauging level 3					
	(Control of pump work)					
6	6 Control of the liquid level in a tank using the two-mode level gauge 3					
	(Control in the work of input and output valves)					
7	Study of the properties of the two-mode controller	3				
8	Study of the properties of the proportional controller	3				
9	Study of the properties of the proportional-differential controller	4				
		32				
Toy	Instrumentation for Process Measurement and Control, Norman A. Anderson, 3rd					
Tex	Textbook: LLC, 1998.					

Department	Chemical Engineerin	g	Major	Chemical Production					
Course Name	Plant Design & Econon	nics	Course Code	KCHE 413					
D	WOME 331		Credit Hours	3		СТН		3	
Prerequisites	KCHE 331		CRH	L	3	P	0	T	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

Course description:

The course aims at giving the trainee the basic skills to deal with the economics of optimal chemical processes where they will be trained on the steps for project design and industrial development.

The trainee will learn the general points that he should take into account when designing any project such as security, safety and environmental protection from pollution and provide the necessary services for the project and other considerations.

Training will be performed on the estimate of the cost of the project at all stages after taking a general idea of accounting.

This course will present a comprehensive study on the process profitability in general and investment costs and appropriate alternatives.

The trainee will also have a clear and enough view for optimal design of equipment used in the factory and find the optimum method to choose necessary materials for manufacturing.

Topics:

- Process design development
- General design considerations
- Cost and asset accounting
- Cost estimation
- Interest and investment cost
- Depreciation
- Profitability, alternative investments and replacements
- Optimum design
- Materials and fabrication selection

Experiments: if applicable it will support the course topics.

References:

- Max S. Peters and Klaus D. Timmerhaus, "Plant Design and Economics for Chemical Engineers", 4th edition, McGraw Hill, Inc., 1991.
- F. C. Jelen and J. H. Black, "Cost and Optimization Engineering", 3th edition, McGraw Hill, Inc., 1992.

	Details of Theoretical Contents					
	Contents	Hours				
1	Process design development	4				
	Introduction					
	Design information from the literature					
	Flow diagrams					
	The preliminary design					
	Comparison of different processes					
	Equipment design and specifications					
2	General design considerations	7				
	Health and safety hazards					
	Loss prevention					
	Environmental protection					
	Plant location					

	Plant layout	
	Plant operation and control	
	• Utilities	
	Structural design	
	 Storage 	
	Materials handling	
3	Cost and asset accounting	4
	Outline of accounting procedure	
	Basic relationships in accounting	
	The balance sheet	
	The income statement	
	Maintaining accounting records	
	Cost accounting methods	
4	Cost estimation	4
	Cash flow for industrial operations	
	 Factors affecting investment and production cost 	
	 Capital investments 	
	 Estimation of capital investment 	
	Cost indexes	
	 Cost factors in capital investments 	
	Estimation of total production cost	
5	Interest and investment cost	4
		•
	Types of interest Naminal and affective interest vates.	
	Nominal and effective interest rates	
	Continuous interest	
	Present worth and discount	
	Annuities Relationships for continuous each flow and continuous interest of	
	Relationships for continuous cash flow and continuous interest of importance for profitchility analyses.	
	importance for profitability analyses	
6	Costs due on interest on investment	4
U	Depreciation	-
	Types of depreciation	
	Service life	
	Salvage value	
	Present value	
	Methods for determining depreciation	
7	Profitability, Alternative investments and replacements	7
	Profitability standards	
	Alternative investments	
	• Replacements	
	 Practical factors in alternative investment and replacement studies 	
8	Optimum design	7
	Incremental costs	
	General procedure for determining optimum conditions	
	Comparison of graphical and analytical methods	
	The break-even chart for production schedule and its significance for	
	optimum analysis	

er)
er in condenser)
7
48
t Design and Economics for
ll, Inc., 1991.

Major Applied Chemical Production Engineering

Department	Chemical Engineering	Major	Chemical Production						
Course Name	Applied Materials Science& Corrosion	Course Code	KCHE 465						
D		Credit Hours		2		СТН		2	
Prerequisites		CRH	L	2	P	0	T	0	
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours									

Course description:

This course focuses on basic elements of materials science, which relate the materials properties and types to the microscopic behavior atoms.

Topics:

- Atomic Structure and Interatomic Bonding
- The Structure of Crystalline Solids
- Mechanical Properties of Metals
- Phase Diagram
- Applications and Processing of Metal Alloys

Experiments: If applicable, it will support the course topics.

References:

• Materials Science and Engineering An Introduction, W.D. Jhon Wiley&Sons.2007

	Details of Theoretical Contents	
	Contents	Hours
1	Introduction	2
	Historical Perspective	
	Materials Science and Engineering	
	 Why Study Materials Science and Engineering? 	
	 Classification of Materials 	
	Advanced Materials	
	Modern Materials' Needs	
2	Atomic Structure and Interatomic Bonding	6
	Introduction	
	ATOMIC STRUCTURE	
	Fundamental Concepts	
	Electrons in Atoms	
	 ATOMIC BONDING IN SOLIDS 	
	 Bonding Forces and Energies 	
	Primary Interatomic Bonds	
	 Secondary Bonding or van der Waals Bonding 	
	Molecules	
3	The Structure of Crystalline Solids	4
	Introduction	
	CRYSTAL STRUCTURES	
	Fundamental Concepts	
	Metallic Crystal Structures	
	Density Computations	
4	Mechanical Properties of Metals	4
	Introduction	
	 Concepts of Stress and Strain 	
	ELASTIC DEFORMATION	

Technica G

KINGDOM OF SAUDI ARABIA Technical and Vocational Training Corporation General Directorate of Curricula

	• Stress-Strain Behavior	
	 An elasticity 	
	Elastic Properties of Materials	
	 PLASTIC DEFORMATION 	
	 Tensile Properties 	
	True Stress and Strain	
	Elastic Recovery after Plastic	
	 Deformation 	
	 Compressive, Shear, and Torsional 	
	 Deformation 	
	Hardness oration	
5	Phase Diagram	8
	 Introduction 	
	 DEFINITIONS AND BASIC CONCEPTS 	
	Solubility Limit	
	• Phases	
	Microstructure	
	Phase Equilibrium	
	One-Component (or Unary) Phase	
	• Diagrams	
	Equilibrium Diagrams Having Intermediate Phases or	
	Compounds	
	Eutectic and Paratactic Reactions	
	 Transformations 	
	 The Gibbs Phase Rule 	
	THE IRON–CARBON SYSTEM	
	 The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram 	
	Development of Microstructure in Iron–Carbon Alloys	
	The Influence of Other Alloying Elements	
6	Applications and Processing of Metal Alloys	8
	 Introduction 	
	 TYPES OF METAL ALLOYS 	
	 Ferrous Alloys 	
	Nonferrous Alloys	
	 FABRICATION OF METALS 	
	 Forming Operations 	
	Miscellaneous Techniques	
	 THERMAL PROCESSING OF METALS 	
	Heat Treatment of Steels	
		32
Textbo	ok: Materials Science and Engineering An Introduction, W.D. Jhon Wiley	&Sons.2007

Elective Courses Description

Department	Chen	nical Engine	ering	Major	(Chemical Production				
Course Name	,	Writing Skill	ls	Course Code		KCHE 424				
				Credit Hours	2 CT			СТН		2
Prerequisites				CRH	L	2	P	0	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours										

Course description:

• This course mainly is a necessary course for Environmental Studies students who are interested in energy as a possible career, and a useful elective course for engineers interested in renewable energy. This course provides an introduction to energy systems and renewable energy resources, with a scientific examination of the energy field and an emphasis on alternate energy sources and their technology and applications.

•

Topics:

- Introduction
- Solar Energy
- Wind Energy
- Other Renewable Systems

Experiments: If applicable, it will support the course topics.

References:

1) Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.

	Detailed of Theoretical Contents	
No.	Contents	Hours
1	 Overview of Technical Research and Report Writing: Definition and Nature of Writing Skills. Properties of Writing Skills. Basic Principles of Writing Skills. Styles in Writing Skills. The Role of Writing Skills. 	4
2	Information Structure/Techniques in Writing Skills: • Formal Definition. • Mechanism Description. • Process Description. • Classification. • Cause and Effect. • Comparison and Contrast.	4
3	Types of Technical Report: Report Layout and Format. Proposal. Progress Report. Feasibility and Recommendation Study. Laboratory and Project Report. Instructions and Manuals. Research Report.	16

4	4 Writing Documentation and Abstract.		4				
5	5 Preparing of Visuals and Presentation.						
			32				
7	Textbook: Pocket Book of Writing Skills for Engineers and Scientists", McGraw-Hill, 2007.						

Major Applied Chemical Production Engineering

Department	Chen	nical Engine	ering	Major	C	Chemical Production				
Course Name	Rei	newable Ene	ergy	Course Code	KCHE461				l	
				Credit Hours		2		СТН		2
Prerequisites				CRH	L	2	P	0	Т	0
CRH: Credit Hours L: Lecture P: Practical T: Tutorial CTH: Contact Hours										

Course description:

This course mainly is a necessary course for Environmental Studies students who are interested in energy as a possible career, and a useful elective course for engineers interested in renewable energy. This course provides an introduction to energy systems and renewable energy resources, with a scientific examination of the energy field and an emphasis on alternate energy sources and their technology and applications.

Topics:

- Introduction
- Solar Energy
- Wind Energy
- Other Renewable Systems

Experiments: If applicable, it will support the course topics.

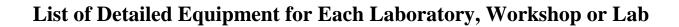
References:

2) Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.

	Detailed of Theoretical Contents					
No.	Contents	Hours				
1	 Introduction: Energy: Past, Today, and Future. A brief history of energy consumption. Energy & Environment. Non-renewable energies. 	4				
2	 Solar Energy: Sun and its Energy: Basics of Solar Energy. Solar Energy in the Past. Solar Energy Resources. Solar Thermal Energy. Solar Photovoltaic. 	10				
3	Wind Energy: • Historical Background. • Wind Resources. • Wind Turbines. • Environmental Impact.	8				
4	Other Renewable systems:	10				

Major Applied Chemical Production Engineering

Textbook: Godfrey Boyle, "Renewable Energy, Power for a sustainable future", Oxford University Press, in association with The Open University, 2004.



Appendix Laboratory Equipment, Workshops and Laboratories

No.	Laboratory name / workshop	Capacity of training	Number of trainers	Training courses benefiting from the laboratory / workshop / lab	
1	Separation Processes lab	12	12	Advanced Separation Processes - Applied Mass Transfer - project	
2	Organic chemistry lab	12	12	Organic chemistry	
3	Process Control lab	12	12	Process Control- project	
4	Chemical Reaction lab	12	12	Chemical Reaction Engineering	
5	Computer lab	12	12	Computer Chemical Process Drawing - Computational Method for Engineering Application	
6	Project lab	4	4	project	

Lab and Workshop's for all					
No.	Product's Name	Quantity			
1.	Distillation column	1			
2.	Gas Absorption column	1			
3.	Chemical reactor unit (Batch Reactor, CSTR, CSTR in Series and Tubular reactor)	4			
4.	Dryer	1			
5.	Liquid –solid extraction	1			
6.	Process Control unit	6			
7.	Diffusion in Liquids &Gases unit	2			
8.	Computer(Excel Program + Matlab Program)	12			
9.	Glassware, balances, hot plat, hot water path, stirrer)	12			
10.	Evaporator	1			
11.	Ion Exchange Chromatography	2			

Major Applied Chemical Production Engineering

References

	1.	Richard M. Felder and Ronald W. Rousseau; "Elementary principle of chemical processes", John Wiley, 3th Edition, 2005
	2.	David M. Himmelblau; "Basic Principles and Calculations in Chemical Engineering", McGraw-Hill, 7th Edition, 2004
	3.	R. Joel, "Basic Engineering Thermodynamics", Dorling Kindersley (India), 5th Ed, 2008.
	4.	J.M. Smith and H.C. Van Ness and M.M. Abbott, "Introduction to Chemical Engineering Thermodynamics", McGraw-Hill, 6th Ed., 2005.
	5.	Y.A. Cengel and M.A. Boles, "Thermodynamics: An Engineering Approach ", McGraw-Hill, 25th Ed., 2006
	6.	H.ScottFogler ((Elements of Chemical Reaction Engineering)) 4 th Edition, 2006
	7.	Petrochemical Process Technology, by Mall I D, Macmillan, Inc., 1st Edition, 2008
	8.	Materials Science and Engineering An Introduction, W.D. Jhon Wiley&Sons.2007
	9.	Transport Processes and Separation Process Principles , C.J. Geankoplis, Prentice , Hall, 4 th Edition, 2003
	10.	Ebewele, R., " Polymer Science and Technology", CRC Press, Florida, 2000.
	11.	Wastewater Engineering: Treatment and Reuse by George Tchobanoglous, Franklin L. Burton, and H. David Stensel, 2002
Textbooks	12.	Instrumentation for Process Measurement and Control, Norman A. Anderson, 3rd Ed., CRC Press LLC, 1998.
	13.	Modern control Engineering, K. Ogata, 4th Edition, Prentice-Hall, Inc., 2002
	14.	Design of Feedback Control Systems, R. T. Stefani, B. Shahian, and G. H. Hostetter, 4th Edition, Oxford Univ. Press. Inc., 2002
	15.	Max S. Peters and Klaus D. Timmerhaus, "Plant Design and Economics for Chemical Engineers", 4th edition, McGraw – Hill, Inc., 1991.
	16.	F. C. Jelen and J. H. Black, "Cost and Optimization Engineering", 3th edition, McGraw Hill, Inc., 1992.
	17.	Douglas, J. Conceptual Design of Chemical Processes. New York, NY: McGraw-Hill Science/Engineering/Math, 1988. ISBN: 0070177627.
	18.	Seider, W. D., J. D. Seader, and D. R. Lewin. Product and Process Design Principles: Synthesis, Analysis, and Evaluation. 2nd ed. New York, NY: Wiley, 2004
	19.	Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz. Analysis, Synthesis, and Design of Chemical Processes, 2nd Edition, 2002
	20.	Gilat, A., "MATLAB: An introduction with Applications", 4th edition, 2010
	21.	- Lacey, R.E. and S.Loaeb - " Industrial Processing with Membranes ", Wiley –Inter Science, New York, 1972.
	22.	King, C.J. " Separation Processes ", Tata McGraw - Hill Publishing Co., Ltd., 1982.

	,
23.	Ronald W.Roussel - " Handbook of Separation Process Technology ", John Wiley, New York, 1987.
24.	Kestory, R.E " Synthetic polymeric membrances ", Wiley, New York, 1987
25.	Osadar, Varid Nakagawa I - " Membrance Science and Technology ", Marcel Dekkar (1992).
26.	Seader, J. D., and Ernest J. Henley. <i>Separation Process Principles</i> . New York, NY: Wiley, 1998. ISBN: 9780471586265.
27.	Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.
28.	29. William H. Brown, Introduction to organic chemistry, 1996 Herbert Meislich, Howard Nechamkin, Jacob sharefkin, organic chemistry, second edition
30.	Pocket Book of Writing Skills for Engineers and Scientists", McGraw-Hill, 2007.